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ABSTRACT 
 

The purpose of this paper is to present a polynomial time algorithm which determines the lot 
sizes for purchase component in Material Requirement Planning (MRP) environments with 
deterministic time-phased demand with zero lead time. In this model, backlog is not 
permitted, the unit purchasing price is based on the all-units discount system and resale of the 
excess units is possible at the ordering time. The properties of an optimal order policy are 
argued and on the basis of them, a branch and bound algorithm is presented to construct an 
optimal sequence of order policies. In the proposed B&B algorithm, some useful fathoming 
rules have been proven to make the algorithm very efficient. By defining a rooted tree graph, it 
has been shown that the worst-case time complexity function of the presented algorithm is 
polynomial. Finally, some test problems which are randomly generated in various 
environments are solved to show the efficiency of the algorithm.  
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1. INTRODUCTION 
 

In a large scale project with nonrenewable resources or in a manufacturing firm, the task of 
replenishing components at the right time, price and quantities has an essential effect on the 
total cost of the project. When the demand rate changes over time and replenishments are 
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made periodically, the problem of ordering a single product over a finite horizon and satisfying 
the demands without backlogging is known as the general dynamic lot size problem. This 
problem has been studied by many researchers. In particular, when all-units quantity discounts 
are available, the problem is called Quantity Discount Problem (QDP). Benton and Park [1] 
have separated the literature on solving QDP into two categories: exact methods and heuristic 
methods. The exact methods find an optimal order policy that minimizes the total inventory 
costs. Chung et al. [2] have developed an optimal dynamic algorithm for the QDP and they 
have proved an essential property of the optimal order policy. Federgruen and Lee [3] have 
proposed a dynamic programming algorithm for the QDP with only one discount level in 
purchasing. They claimed that their algorithm is an optimal algorithm of )( 3NO  where N  is 
the number of periods in the planning horizon, but Xu and Lu [4] by presenting some special 
counterexamples have shown that their algorithm fails to find the optimal solution in some 
cases. Mirmohammadi et al. [5] have presented an optimal algorithm based on the branch and 
bound approach for the QDP which is extremely more efficient than Chung et al. algorithm 
[2], especially for large scale problems. Chan et al. [6]  have shown that the QDP becomes 
NP-hard if the purchasing cost function of the amount ordered satisfies the three following 
properties: 

(i) it is  a nondecreasing function of the amount ordered, 
(ii) the purchasing cost per unit is nonincreasing in the amount ordered and  
(iii) it either varies from period to period or the number of breakpoints is not bounded 
The QDP is also applicable for production planning problems as Hoesel and Wagelmans 

[7] have developed an algorithm that solves the constant capacitated economic lot-sizing 
problem with concave production costs and linear holding costs in O(N3) time. Their greedy 
algorithm is based on the standard dynamic programming approach which is based on 
structural properties of the optimal sub plans to arrive at a more efficient implementation. 
When the number of items which should be acquired is more than one, the QDP changes into 
the total quantity discount (TQD). Goossens et al. [8] have proved that TQD is NP-hard and 
also there exists no polynomial-time approximation algorithm with a constant ratio for this 
problem (unless NPP = ). When all-units discount are available from vendors, under some 
circumstances, buying a sufficiently large quantity to qualify for a certain discount and then 
disposing the excess units (with a positive or negative cost per unit) to save on inventory 
holding cost, leads to economic polices  [9]. Sethi [9] has considered the simple lot size mode 
with quantity discount and allowing the possibility of disposal at some finite cost in the 
environment with constant demand rate. The case with negative disposal cost per unit is 
considered as the resale in the literature which is modeled by Sohan and Hwang [10]. With 
respect to the running time of the algorithm. Sohan and Hwang [10] have observed that their 

algorithm is in ))(( 213

q
d

NO
N

 where Nd1  is the cumulative demand of all periods and q  is 

the discount level. It is obvious that the time complexity function of their algorithm depends on 
the demand rate. For example if the item to be acquired has a demand pattern with constant 
average, the time complexity function of their algorithm becomes )( 5NO . It can be observed 
in real-life situations that the demand for essential commodities such as petrol, diesel and for 
sophisticated items such as electronic goods, computer spare parts, etc. increases gradually 
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with time. So, their demand pattern can be represented appropriately by a linear increasing 
function of time, Giria et al. [11]. In these cases, their algorithm becomes )( 7NO . 

The organization of this paper is as follows. In section 2, the dynamic quantity discount lot 
size model with resale is discussed. The assumptions and the properties of an optimal order 
policy for the single level discount case are explained in section 3. In section 4, an optimal 
branch and bound algorithm and a numerical example are presented. The worst-case time 
complexity function of the presented algorithm is studied in section 5 by defining a rooted tree 
graph. Section 6 presents an experimental design for evaluating our algorithm in some varied 
environments.  Concluding remarks are made in section 7. 

 
 

2. THE DYNAMIC QUANTITY DISCOUNT LOT SIZE MODEL WITH 
RESALE 

 
Consider a planning horizon of N periods. It is assumed that there is a known positive 
demand for an item at each period that should be met by some orders through these periods, 
and backlog is not allowed. We assume that any ordering can occur only at the beginning of 
each period with constant ordering cost of A . The ordered items arrive immediately to satisfy 
the demand of that period. At this time, it is also possible to resell some units of the arrived 
order at a constant price. 

Now, for period t , Nt   ,...,2,1= , let  
=td amount demanded 
=tI  amount of inventory at the end of period, 00 == NII  
=th holding cost per unit of inventory carried from period j  to period 1+j  

∑
=

=
j

ti
i

j
t dd  , the cumulative demands from period t  to period j , Njt ≤≤ .  

the constant parameters are  
=U  unit net purchasing price 
=A  ordering cost  
=C  unit resale price 

There are two decision variables for period t , Nt   ,...,2,1= , as stated below: 
=tx amount ordered 
=tr amount resold. 

It is assumed that there is one discount rate α , 10 ≤< α , which is associate with the price 
break point (discount level) D , 0>D . The unit purchase price of tx  is U)1( α−  if Dxt ≥ , 
otherwise it is U . A reasonable assumption is that UC )1( α−< . The problem is to find tx  
and tr , Nt   ,...,2,1= , such that all demands are met at the minimum total cost. The model can 
be formulated as follows: 

[ ]∑
=

−++=
N

t
ttttt rCIhxpxAZMin

1
..)()(.  λ  
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s.t.     ttttt rdxII −−+= −1 , Nt ,...,2,1=  
    0≥tI , Nt   ,...,2,1=  
   ,00 == NII  

, and 0  , Integerrx tt ≥ Nt ,...,2,1=  

where 


 >

=
otherwise

x
x t

t 0
01

)(λ  and  

 

 


 ≥−

=
otherwiseUx

DxUx
xp

t

tt
t

)1(
)(

α
 (1) 

 
The purchasing cost function which is depicted in Figure 1 is a time independent and 

piecewise linear function. 

 
Figure 1. The purchasing cost function 

 
 

3. THE PROPERTIES OF THE OPTIMAL ORDER POLICY 
 

The properties of an optimal order policy are presented in this section. These properties let us 
to develop the optimal branch and bound algorithm in the next section. Property 1 and 
Property 2 have proven by Sohan and Hwang [10] but Property 3 and Property 4 are proved 
here. At first, we need to define the following terms. 

Fraction period: Let period t , Nt   ,...,2,1= , be a "fraction period" whenever Dxt ≠  and 
0>tx . 

Resale period: Let period t , Nt   ,...,2,1= , be a "resale period" whenever 0>tr .  
Sub plan: Let in an optimal order policy 0== vu II , Nvu ≤<≤0 , and 0>tI  for 

vtu << . },...,2,1{ vuuSPuv ++=  is defined as a "sub plan". 

D x

)( txp  
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Property 1. There exists an optimal order policy such that each one of its sub plans has the 
following properties: 

1-1- It includes at most one fraction period. 
1-2- It includes at most one resale period. 
1-3- It does not include both fraction period and resale period. 

Property 2. If any resale occurs in uvSP , then 1+u  is the resale period. 
Property 3. Let vuf ,  be a fraction period in uvSP  and }0|{max, >=

≤<
t

vtu
vu xtl . Then 

vuvu lf ,, = . 
Proof. Assume on the contrary that vuvu lf ,, < . By Property 1-1, we have Dx

vul =
,

.  Since 

vuf ,  is a fraction period, then Dx
vuf ≠

,
. Let 

vufP
,

 and 
vulP

,
 be the unit purchasing price for the 

lots 
vufx
,

 and 
vulx

,
, respectively. Decrease 

vufx
,

 by 1 and also increase 
vulx

,
 by 1 (it is possible 

since 0>tI  for vuvu ltf ,, <≤ ). The net decrease in the objective value of the optimal order 

policy is ∑
−

=

+−
1,

,

,,

vu

vu

vuvu

l

fi
ilf hPP . If it is positive, the optimality is contradicted and the proof is 

completed, otherwise, we have 
 

 ∑
−

=

≥−
1,

,

,,

vu

vu

vuvu

l

fi
ifl hPP  (2) 

 
In this case move the ordering of period vul ,  to period vuf ,  in other words, increase 

vufx
,

 

by 
vulx

,
 and omit the ordering at vul , . The net decrease in the objective value of the optimal 

order policy is at least )(
1,

,

,,, ∑
−

=

−−+
vu

vu

vuvuvu

l

fi
ifll hPPxA  which is positive by (2). This contradicts 

the optimality, and the proof is completed. □ 
Lemma 1. Let ),( tuN , Nvtu ≤≤<≤  0 , be  the total number of ordering occurred from 
1+u  to t  when uvSP  has a resale period and ),( vur  be the resale amount at 1+u   in this case 

(i.e. 1),( += urvur  ). We have  

 










 +
= +

D
vurd

tuN
t
u ),(

),( 1  (3) 

 v
u

v
u dD
D

d
vur 1

1),( +
+ −












=  (4) 

 
Proof. If uvSP  has a resale period, then },0{ Dxt ∈ , vuut   ,...,2,1 ++= , by Property 1-3. 

Therefore, to cover the demands of periods tuu   ,...,2,1 ++ , it is necessary that 
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D
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tuN
t
u ),(

),( 1 , then DI t > , but this incurs an 

additional inventory holding cost and contradicts the optimality. Now, Let n  be the total 
number of ordering occurred through uvSP .  Since there is no fraction period in uvSP  by 

Property 1-3, we have v
udnDvur −=),( . Since 0== vu II , we have 












≥ +

D
d

n
v
u 1 . If  












> +

D
d

n
v
u 1 , then Dvur >),(  which contradicts the optimality by the assumption of 

UC )1( α−<  and the proof is complete. □   
The following property can be derived from previous properties. 
Property 4. In the optimal order policy each sub plan like uvSP , Nvu ≤<≤0 , has one of 

the following forms: 
4-1- 01 =+ur , 1−−= l

v
ll Idx  and },0{ Dxt  ∈  for vtu ≤≤+1 , vult ,≠ , where 

}0|{max, >=
≤<

j
vju

vu xjl .  

4-2- ),(1 vurru =+  and },0{ Dxt  ∈  for vtu ≤≤+1  where ),( vur  is obtained by (4). 
Proof. By Property 1 uvSP  has at most one fraction period; therefore, },0{ Dxt  ∈  for 

vtu ≤≤+1 , vult ,≠ . If 01 =+ur , then 1,,, −−=
vuvuvu l

v
ll Idx  since vul ,  is the last period in which 

an ordering occurred and 0== vu II . Consider the case 01 >+ur . By Lemma 1 ),(1 vurru =+  
and by Property 1-3 },0{ Dxt ∈  therefore, the proof is complete. □   

Corollary 1. If uvSP  has a resale period , i.e. 01 >+ur , the set of orders occurred through 

uvSP  is ),( vuΦ  where 
 )]0,(),...,0,(),0,(),,(,[(),( DDDvurDvu    =Φ  (5) 

 
Such that ),(),( vuNvu =Φ  and the thi , ),(,...,2,1 vuNi   = , ordering of ),( vuΦ  occurred at 

period )(it , vitu ≤≤+ )(1  where 1)1( += ut  and 
 

 }),()1(|{max)( 1
12

−
+≤≤+

≥−−= j
uvju

dvurDijit  (6) 

 
Proof. The number of ordering occurred through uvSP , the amount ordered and the 

amount resole are determined by Property 4-2. Since 0=uI , it is obvious that 1)1( += ut . Let 

jit =)( . The remaining inventory at the beginning of period j  is 1
1),()1( −

+−−− j
udvurDi . 

Since backlog is not permitted 1
1),()1( −

+≥−− j
udvurDi . On the other hand to reach the 

minimum inventory holding cost, an ordering must occur only when the remaining inventory is 
not sufficient enough to cover the forward period. This means that 
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}),()1(|{max)( 1
12

−
+≤≤+

≥−−= j
uvju

dvurDijit  and the proof is complete. □ 

To determine whether resale is economical or not when the order size differs from D  and 
to reach an upper bound for the resale amount an order size break point is defined. This break 
point is denoted by 5.0D and is calculated by Eq. (7):  

 

 D
CU

CUD
−

−−
=

)1(
5.0

α  (7) 

 
If quantity x , DxD ≤≤5.0 , is to be acquired, then it is more economical to purchase D  

units and resell xD − . The next lemma obtains an upper bound for the resale amount. 
Lemma 2. For the resale period of uvSP , 1+u , we have 5.010 DDru −≤≤ + . 
Proof. If uvSP  has no resale period, Property 2 implies 01 =+ur  and the proof is complete; 

otherwise, assume that 5.01 DDru −>+ . Since Dxu =+1  by Property 1-3, if 1+− urD  units are 
purchased directly without any resale, a lower purchasing cost will be incurred, and this is 
impossible because uvSP  is a sub plan of the optimal order policy. Hence, the proof is 
complete. □  

Sometimes a sub plan like uvSP  may have only one ordering at the beginning of 1+u  
without any resale. By comparing the objective values, it is possible to distinguish this case 
from the case in which uvSP  has a resale period. Let ),( vuZso  and ),( vuZr  be the objective 
values in these cases respectively. We have  

 ∑
−

+=
++++ −++=

1

1
1111 )()(),(

v

ut

t
u

v
ut

v
u

v
uso ddhdpdAvuZ  (8) 

 ),(.)),().,(())1().(,(),(
1

1
1 vurCdvurDtuNhUDAvuNvuZ

v

ut

t
utr −−−+−+= ∑

−

+=
+α  (9) 

 
where )( 1

v
udp + , ),( juN  and ),( vur  are obtained by (1), (3) and (4), respectively.  By the 

following theorem we are able to construct the optimal order policy which has the above 
properties. 

Theorem 1. Let ),( tt rx  be the optimal order policy in period t , Nt   ,...,2,1= . 
1- If tt dI ≥−1 , then  )0,0(),( =tt rx . 

2- If tt dI << −10 , then 0),( ttt Srx ∈  where 

)}0,{(}...,1,|)0,{( 1
0 DNttvIdS t

v
tt ∪+=−= −  ,  

3- If 01 =−tI , then  1),( ttt Srx ∈  such that )}0,{(}...,1,|),{(1 DNttvrxS v
t

v
tt ∪+==  ,  where 

 






−
−≥−−>−

=
otherwise

 or   if
)),1(,(

),1(),1(),1()0,(),( 5.0

vtrD
vtZvtZDDvtrdrx sor

v
tv

t
v
t  and ),1( vtr −  is 

obtained by (4). 
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Proof. When tt dI ≥−1  due to a lower inventory holding cost, the optimality imposes 
)0,0(),( =tt rx . A sub plan, say uvSP , exists such that uvSPt ∈   and Nvtu ≤≤≤+≤ 11 . 

When jt dI << −10  by the definition of  uvSP , we have 2+≥ ut ; therefore, 0=tr  by 

Property 2. On the other hand, by Property 4-1 we have 1−−= t
v
tt Idx  when t  is the fraction 

period of uvSP , otherwise Dxt = , hence )}0,(),0,{(),( 1 DIdrx t
v
ttt  −−∈  for this case. Now, let 

01 =−tI  therefore, 1+= ut  which means that a resale may occur at t . If 5.0),1( DDvtr −>−  

or ),1(),1( vtZvtZ sor −≥− , then uvSP  has no resale period and by Property 4-1  v
tt dx =  (if t  

is the fraction period) or Dxt =  (if t  is not the fraction period); otherwise, 
)),1(,(),( vtrDrx tt −=  (if uvSP  has a resale period) or )0,(),( Drx tt =  (if uvSP  has no resale 

period). Hence, for this case, )}0,(),0,{(),( Ddrx v
ttt  ∈  if 5.0),1( DDvtr −>− , or 

),1(),1( vtZvtZ sor −≥−  otherwise, )}0,()),,1(,{(),( DvtrDrx tt  −∈  . By Nttv  , ...,1, +=  the 
proof is complete.  □ 

By Theorem 1 the possible alternatives for ),( tt rx , Nt   ,...,2,1= , are reduced to a finite set 
of order policies when 1−tI  is known. In other words, if tt dI ≥−1  then )0,0(),( =tt rx ,  
otherwise ttt Srx ∈),(  where  

 








=

>
=

−

−

0

0

1
1

1
0

tt

tt

t

IifS

IifS
S  (10) 

 
Note that in the case that the condition of resale are held (i.e. 5.0),1( DDvtr −≤−  or 

),1(),1( vtZvtZ sor −<− ) all order policies in },...,1,{ vtt   +  are determined by Corollary 1 and 
1+v  is the next reordering point. Since 2|| +−≤ tNSt , there are at most 2+− tN  different 

candidate for the order policy in period t , Nt   ,...,2,1= , and therefore, the optimal order policy 

of the problem can be found among at most )!1()2(
1

+=+−∏
=

NjN
N

j
 different alternative 

policies. A branch and bound algorithm is presented in the next section to enumerate these 
policies implicitly. 

 
 

4. A BRANCH AND BOUND ALGORITHM 
 

Now, we are able to construct the sequence of orders in the optimal order policy for the 
problem. Starting from period 1 and assuming 00 =I , we calculate the set of alternatives for 

),( 11 rx , or 1S . Each order policy in 1S , like ),( 11 rx , covers the demand up to a period, say 
t , 2≥t , with a definite inventory 1−tI  which are obtained by Eqs. (11) and (12), respectively. 
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 }|{max 1
111

12

−

+≤≤
≥−= j

Nj
drxjt  (11) 

 
 1

1111
−

− −−= t
t drxI  (12) 

 
Period t  is called a "reordering point" because the remaining inventory ( 1−tI ) is not enough 

to cover the demand of any forward periods. Each reordering point has a corresponding partial 
policy which is defined as the ordered set of those order policies that cover the demand up to 
the reordering point. The corresponding partial policy of t  is denoted by tP  where 

)],[( 11 rxP t =  in this case. Now, having t  and 1−tI , tS  is obtained and for each feasible order 

policy ttt Srx ∈),( , the corresponding reordering point with its inventory are calculated. This 
process is repeated till at least one of the fathoming rules, derived in this section, occurs. In 
order to follow this process more easily, we implement it in the form of a search tree which is 
formed of nodes and edges. A node in the search tree contains the information of a reordering 
point and its corresponding partial policy. This information is summarized in four elements. In 
details, each node is denoted by [ t

t PZIt ,,, 1− ] where: 
t : The reordering point; the period in which the node is ended to, Nt   2,...,,1=  

1−tI : The remaining inventory of the node; obviously tt dI <−1  
tP : The partial policy of the node; it is an ordered set of order policies which cover the 

demand up to t  
Z : The objective value of the node; it is the sum of inventory holding cost, ordering cost 

and purchasing cost, including resale income, of the orders in tP . 
For every search tree, we consider [ φ,0,0,1 ] as the root node. Each node in the search tree 

is formed by branching out another node. The branched node is called a "parent node" and the 
other one is called a "child node". 

The algorithm presented for the problem in this paper has two main steps; branching step 
and fathoming step which are discussed in the following sections. 

 
4.1. Branching step  

Let [ k
k PZIk ,,, 1− ], Nk   ,...,2,1= , be a node in the search tree such that φ≠′kS  where 

}|),{( 1 kkkk dIrxSrxS ≥+−∈=′ − . For each kSrx ′∈),(  a child node denoted by 

[ j
t PZIt ,,, 1 ′− ] is added to the set of children of [ k

k PZIk ,,, 1− ] by the two following methods: 
1- For 0=r  we have  

}|{max 1
1

11

−
−

+≤≤+
≥+= g

kk
Ngk

dIxgt  

1
11

−
−− −+= t

kkt dIxI  

)]0,([ xPP kt M=  



S.H. Mirmohammadi, Sh. Shadrokh and K. Eshghi 

 

192 

∑
−

=
− −++++=′

1

1 )()(
t

ki

i
kki dIxhAxxpZZ  

2- For 0>r  there exists v , N,...,kk,v   1+= , by Theorem 1 such that ),1( vkrr −= . In 
this case we have  

1+= vt  
01 =−tI  

)],1([ vkPP kt −Φ= M  
),1( vkZZZ r −+=′  

where ),1( vk −Φ  is the set of order policies occurred through },...,1,{ vkk   +  and is 
obtained by (5). 

 
4.2. Fathoming step 

Using the two fathoming rules derived in this section, each child node generated in the 
previous step is checked for fathoming criteria in the fathoming step. If it is fathomed, then it 
is closed otherwise, it is considered as an open node for branching out in the next iteration of 
the algorithm. Furthermore, if the partial policy of the node is such that all periods demand are 
covered, it is fathomed and the current upper bound of the objective value is updated. 

A common rule for fathoming a node in the branch and bound algorithms is to compare its 
objective value with the best current objective value. To make this fathoming more efficient in 
the minimization problems, a lower bound of the objective value of the policy which includes 
the node is compared with the best current objective value. The objective value in this problem 
has three elements; inventory holding cost, ordering cost and purchasing cost including resale 
income. The two following lemmas obtain a lower bound for these costs separately. Let Z  be 
the sum of inventory holding cost and ordering cost of the orders occurred in the last N ′  
periods starting from period t , Nt   ,...,2,1= , (obviously 1+−=′ tNN ). Furthermore, let 

{ }iNit
hh  

≤≤
= min  and }{min iNit

dd
≤≤

= . The following lemma which has been proved by 

Mirmohammadi et al. [5], obtains a lower bound for Z . 
Lemma 4. For 01 =−tI , Nt   ,...,2,1=  , a lower bound for Z  is  
 

 








>
−′′

+′+
−

+



 ′

≤′

=′ ∗∗

∗
hdAhdnnnAhdnnA

n
N

hdAAN
hdNZL

2
)1()()

2
)1((

),,(
δ

 (13) 

 

where 1+



=∗

hd
An ,  ∗

∗ 




 ′
−′=′ n

n
NNn  and 





=′
>′

=′
0 if0
0 if1

)(
n
n

nδ . 

Lemma 5. The minimum purchasing cost including resale income of acquiring x  units, 
0≥x , is )(xMPC  where  
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>−
≤<−−−

≤

=
DxxU
DxDCxDDU

DxxU
MPC(x)

              if                 )1(
    if)()1(
         if                          

5.0

5.0

α
α  (14) 

Proof. It follows directly by the definition of 5.0D . □   
Now, by the two previous lemmas we can calculate a lower bound for the objective value 

of all policies derived from a special node in the search tree. If this lower bound exceeds our 
best current upper bound, the node will be fathomed. Let [ t

t PZIt ,,, 1− ] be an open node in the 
search tree such that Nt <≤1 . Furthermore, let { }j

Njt
hh

≤≤
=′ min (the minimum unit holding cost 

per each period through t  to the end of planning horizon), }}{min,min{
1

1 j
Njt

tt dIdd
≤≤+

−−=′ and 

uZ be the best current upper bound for the objective value.  
Fathoming rule 1. The node is fathomed if 

ut
N
tL ZIdMPChdtNZZ >−+′′+−+ − )(),,1( 1 . Furthermore, when N t =  it is fathomed if 

utN ZIdMPCAZ >−++ − )( 1  

Proof. To reach a feasible order policy by this node, we need at least 1−− t
N
t Id  units of 

material. The lower bound of the purchasing cost including resale income of this amount of 
materials is )( 1−− t

N
t IdMPC . Also by Lemma 4,  the lower bound of the sum of inventory 

holding cost and ordering cost is ),,1( hdtNZL ′′+−  from period t  to period N . Note that the 
minimum demand and the minimum holding cost per unit in this interval is d ′  and h′ , 
respectively. Therefore, the objective value of all child nodes of [ t

t PZIt ,,, 1− ] will increase at 

least by )(),,1( 1−−+′′+− t
N
tL IdMPChdtNZ . If 

ut
N
tL ZIdMPChdtNZZ >−+′′+−+ − )(),,1( 1 , the optimal order policy of the problem can 

not be found by branching this node. Fathoming rule 1 is obviously true when N t = . □  
Another way to fathom a node is to compare it with the existing nodes in the search tree. 

When two nodes end to a period with the same inventory, branching out the node with larger 
objective value will not result in the optimal order policy of the problem and it is fathomed. In 
the presented algorithm most of the nodes end to a period with the same inventory and simply 
one of them is fathomed, but in some cases their inventories are not equal. However, we can 
calculate an upper bound for the cost incurred while making their inventories equal. Now, 
increase the inventory of [ t

t PZIt ,,, 1− ] by I , Nt <≤2 ,  10 −−≤≤ tt IdI , by changing one of 

the orders in tP (without any new ordering). Lemma 6 presents an upper bound for the cost 
incurred in this situation. 

Lemma 6. An upper bound for the cost incurred by adding I  more units to the inventory 
of [ t

t PZIt ,,, 1− ] without any new ordering  is ),( IPMI t  where 

 












++−+−= ∑
−

=∈

1
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)()(min),(

t
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t
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where i  is the period in which the ordering of ),( ii rx has occurred. 

Proof. Omit each order ),( ii rx  in tP  and acquire Irx ii +−  at the beginning of period i . 
Calculate the change of the total cost. □  

Lemma 7 implies a property of  
x

MPC(x)   which let us to present Fathoming Rule 2. 

Lemma 7. 
x

MPC(x)  is non-increasing  in x. 

Proof. It is obvious for Dx ≥  and 5.0Dx ≤ . By calculating 
x

MPC(x)
x

)MPC(x
−

+
+

1
1  for 

DxD <<5.0  the result is obtained.□ 

Fathoming Rule 2. Consider [ t
t PZIt ,,, 1− ] as node 1 and [ t

t PZIt ′′′− ,,, 1 ] as node 2, 

, N,, t …= 32 , in a search tree. There are two possible cases for 1−tI  and 1−′tI  as stated below: 

2.1. 1−tI = 1−′tI : In this case the node with larger objective value is fathomed. If their 
objective values are equal, one of them is fathomed arbitrarily. 

2.2. ≠−1tI 1−′tI : In this case one of them is larger than the other one. Let 011 ≥′> −− tt II  and 

11 −− ′−= tt III  

2.2.1. Node 2 is fathomed if ′≤ ZZ .  

2.2.2. Node 1 is fathomed if Z
Id

IdMPC
IZ

tt

tt <
′−

′−
+′

−

−

1

1)( . 

2.2.3. Node 1 is fathomed if ZIPMIZ t <′+′ ),( ,  where ),( IPMI t′  is obtained by 
Eq.(15). 

Proof. Since 2.1 and 2.2.1 are obvious, we just consider 2.2.2 and 2.2.3. To prove 2.2.2 let 
CH1 be any arbitrary child node branched out from node 1 by an order like ),( tt rx . CH1 ends 
to a period like Nttkk  ,...,   2,1, ++= , with 1−kI  inventory such that 

1
11

−
−− −+−= k

ttttk dIrxI . The objective value of CH1 is     
 

 ∑
−

=
−

−
−−

− −++−+++
1

1
1

11
1 )()(

k

ti
i

i
tk

k
ttk

k
t hdIdIIdMPCAZ  (16) 

 
Construct CH2 by branching out node 2 on ),( tt rIx + . CH2 ends to period k  with exactly 

1−kI  inventory. The objective value of CH2 is 

 ∑
−

=
−

−
−−

− −++′−+++′
1

1
1

11
1 )()(

k

ti
i

i
tk

k
ttk

k
t hdIdIIdMPCAZ  (17) 

 
Let 11

1
−−

− −+= tk
k
t IIdY . We show that ZZYMPCIYMPC ′−<−+ )()(  by Eqs. (16) and 

(17). Obviously, )()( YMPCIYMPC −+  is equal to 
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IY
IYMPCI

Y
YMPC

IY
IYMPCY

+
+

+−
+

+ )())()((  which is less than or equal to 
IY

IYMPCI
+

+ )(  by 

Lemma 7. Since 1−′−≥+ tt IdIY , we have 
1

1)()(

−

−

′−

′−
≤

+
+

tt

tt

Id

IdMPC
I

IY
IYMPCI   which is less 

than ZZ ′−  by the assumption of 2.2.2 and the proof is complete for this case. To prove 2.2.3, 
note that tP  has covered the demands of periods 1 to 1−t with 1−tI  surplus inventory at the 

cost of Z . On the other hand, ZIPMIZ t <′+′ ),(  states that by changing one of the previous 

order policies in tP ′ , it is possible to cover the demands of periods 1 to 1−t  with 1−tI  surplus 
inventory at a lower cost than Z . Therefore, the optimal order policy of the problem will not 
be found by continuing of tP  and the proof is complete. □ 

To illustrate the presented algorithm, an instance of the problem with five periods is 
considered with the relevant periods demand given in Table 1. The discount level is 150=D  
and discount rate is %20=α .  

 
Table 1.  The periods demand of the example 

t 1 2 3 4 5 

td  50 80 60 100 40 

 
The ordering cost and holding cost per unit per each period is 100 and 1, respectively. The 

net unit purchasing price and the unit resale price are 10 and 6, respectively; therefore, 5.0D  
becomes 75 for this example. Figure 2 shows the search tree and its nodes for this example. 
Each node in Figure 2 consists the data for [ t

t PZIt ,,, 1− ] which are defined in Section 4.1. 

 
Figure 2. The search tree of the example 

 
The shaded part of each node contains the index of the fathoming rule and the index of the 

node which is used in the fathoming rule. For example the expression "FR2-1, Node 4" in the 
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shaded part of node 13 shows that node 13 has been fathomed by comparing with node 4 
using fathoming rule 2-1. The number that is in the north east corner of each node is Node 
Formation Number (NFN) which shows the sequence of node generation in the branching 
step. The branching of nodes is based on the Width-First-Search. Note that before a node is 
branched, it is checked for fathoming. 

 
 

5. THE TIME COMPLEXITY FUNCTION OF THE ALGORITHM  
 

The number of nodes branched out to find the optimal order policy determines the running 
time of the algorithm. In other words, the worst-case time complexity function of the 
algorithm can be calculated by enumerating the maximum number of branched nodes in the 
search tree. By defining a graph, called "counter graph", corresponding to the search tree of a 
problem, we are able to enumerate the maximum number of branched nodes in an instance 
with N  periods. 

 
5.1. The definition of the counter graph  

Let ),( EVT =  be the counter graph corresponding to the search tree of an instance with N  
periods. The set of vertices, V , and the set of edges, E , are defined as follow:   

1. The vertex v  labeled by ),( 1−tIt , ,,...,2,1 Nt   =  belongs to V  if and only if there is a 

node in the search tree labeled by [ t
t PZIt ,,, 1− ] which is branched out (i.e. it has at 

least one child). The corresponding node of v  is [ t
t PZIt ,,, 1− ] and the corresponding 

vertex of the node [ t
t PZIt ,,, 1− ] is v . The corresponding vertex of the root node 

[ φ,0,0,1 ] is denoted by 0v  and  is called the root of ),( EVT = . 
2. Let v′ V∈  labeled by ),( 1−′′ tIt , ,,...,2,1 Nt   =′ , be the corresponding vertex of node 

[ t
t PZIt ′

−′ ′′ ,,, 1 ] in the search tree. 

2-1- 
→

′vv0  labeled by 0, belongs to E  if and only if 01 =−′tI . 

2-2- 
→

′vv  labeled by tt rx − , belongs to E  if and only if  01 >−′tI  where v  is the 

corresponding vertex of the parent node of [ t
t PZIt ′

−′ ′′ ,,, 1 ] and ),( tt rx  is the order policy by 

which [ t
t PZIt ′

−′ ′′ ,,, 1 ] is derived from its parent.  

When node [ t
t PZIt ′

−′ ′′ ,,, 1 ] which has a parent node like [ t
t PZIt ,,, 1− ] in the search tree 

( Ntt ≤′<≤0 ) is branched out, its corresponding vertex v′  is added to V . If this node has no 
beginning inventory, i.e. 01 =−′tI , v′  is connected to the root of the counter graph, 0v , by an 
edge labeled by 0. If 01 >−′tI  then v′  is connected to the v  by an edge labeled by tt rx −  

where v  is the corresponding vertex of [ t
t PZIt ,,, 1− ] and ),( tt rx  is the order policy by which 

[ t
t PZIt ′

−′ ′′ ,,, 1 ] is derived from [ t
t PZIt ,,, 1− ], i.e. )],([ tt

tt rxPP M=′ . Since 0>− tt rx , each 
edge in ),( EVT =  labeled by 0 is a pendant edge of 0v . Figure 3 depicts the corresponding 
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counter graph of the search tree shown in Figure 2.  
 

 
Figure 3. The counter graph of the example 

 
5.2. The properties of the counter graph  

The following lemmas characterizes ),( EVT =  more precisely which let us to present an 
upper bound for V . 

Lemma 8. Let in, vv ′,  labeled by x , 0≥x , be an arbitrary edge of ),( EVT = . Then 
},0{ Dx∈ . 

Proof. Let [ t
t PZIt ,,, 1− ] and [ t

t PZIt ′
−′ ′′ ,,, 1 ] be the corresponding nodes of v  and v′ , 

respectively. If 01 =−′tI  then 0vv =  and by the definition of ),( EVT = , 0=x  and the proof is 

complete. Let 01 >−′tI . The ordering occurred at t  is in tP ′ , i.e. t
tt Prx ′∈),( . If 0>tr , then 

01 =−′tI  by part 2 of Section 4-1 which contradicts 01 >−′tI . For 0=tr , we have 

1−
′ −= t

t
tt Idx  or Dxt =  by Theorem 1. The first case contradicts 01 >−′tI  and the second one 

imposes Dx =  therefore, the proof is complete for  01 >−′tI .  □ 
Lemma 9. Each vertex is unique in ),( EVT = .  
Proof. Assume on the contrary that a counter graph ),( EVT =  has two vertices like 

Vvv ∈′,  which are labeled by ),( 1−tIt , Nt ≤≤1 ,  01 ≥−tI . Since the corresponding nodes of 
 v  and v′  end to t  with equal inventory 1−tI , one of them is fathomed by Fathoming Rule 2.1 
and it is never branched. Hence, either Vv∉  or Vv ∉′  and the proof is complete. □ 

Lemma 10. Each vertex, except the root of ),( EVT = , has at most one child. 
Proof. Assume on the contrary that there is a vertex 0  , vvVv ≠∈ , which has two or more 

pendant edges with different labels. Let a  and b be their labels. Since ba ≠  and },0{, Dba  ∈  
by Lemma 8, one of them is 0 and the other one is D .But it is impossible because the edge 
labeled by 0 is a pendent edge of the root of 0v  by the definition of ),( EVT =  and the proof is 
complete. □ 

Lemma 11. The root of ),( EVT = , 0v , has at most N  children. 
Proof. The number of pendant edges of 0v  determines the number of its children. The 

number of pendant edges of 0v  labeled by a positive number x , is at most 1 by Lemma 8. By 
the definition of ),( EVT = , the number of nodes with zero inventory branched out in the 
search tree, determines the number of pendant edges of 0v  labeled by 0. From all nodes in the 
search tree with zero inventory which are ended to period k , Nk ≤≤2 , at most one node is 
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branched out and the other nodes are fathomed by Fathoming Rule 2-1. Since Nk ≤≤2 , there 
are at most 1−N  nodes with zero inventory which are branched in the search tree; hence, the 
maximum number of pendant edges of 0v  is 11+−N  in ),( EVT =  and the proof is complete. 
□  

Lemma 12. Let H  be the height of ),( EVT = , then 























≤ N

D
dH

N
 ,min 1  and 

1|| +≤ NHV . 
Proof. Let v  labeled by ),( 1−tIt , 0, 1 ≥≤ −tINt , be a leaf of T  which has the longest path 

from the root of T . Let this path and its length be denoted by LP  and || LP , respectively, 
then || LPH = . Since each edge in LP  represents an ordering and each ordering covers the 
demand of at least one period therefore, NLPH ≤= || .On the other hand since Nt ≤ , we have  

 N
t

t dId 11
1

1 <+ −
−  (18) 

 
Since by Lemma 8 each edge of LP  except the root pendant edge is labeled by D , we 

have 1
1

1)1|(| −
− +≤− t

t IdDLP . Therefore, by (19) and the fact that || LP  is an integer we 

have  











≤

D
dLP

N
1||  and },min{ 1 N

D
dH

N












≤ . Now, let )(iR , Hi ,...,2,1,0= , be the total 

number of the vertices in the thi level  of T . We have 1)0( =R  and NiR ≤)( , Hi ,...,2,1= , by 

Lemma 11 and Lemma 10. Therefore, 1)()0(||
1

+≤+= ∑
=

NHiRRV
H

i
 and the proof is 

complete. □ 
Without loss of generality, the worst-case time complexity function of the algorithm with 

only Fathoming Rule 2-1 and Fathoming Rule 1 is considered here, since these rules are more 
effective than the other ones. However, the algorithm with all fathoming rules is not more 
complex than what is considered here. 

For the rest of this section we need to define the following notations. 
NBN : The maximum number of branched nodes  
MCN : The maximum number of the children of a branched node 
Bt  :  The maximum time required for generating a child node  

1Ft  : The maximum time required for checking a node by Fathoming Rule 1   

2Ft  : The maximum time required for checking a node by Fathoming Rule 2.1. 

We know that by Lemma 12, 12 +≤ NNBN and by Eq. (10) 1+≤ NSk  for Nk  ,...,2 ,1= , 
therefore, 1+≤ NMCN . Furthermore, all parameters Bt , 1Ft , 2Ft are constant and 
independent of the problem parameters. 
5.3. The worst case time complexity function  

By the properties of the counter graph described in the above lemmas Theorem 2 is followed 
which presents  an upper bound for the worst-case time complexity function of the presented 
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algorithm. 
Theorem 2. Let )(Nf  be the worst-case time complexity function of an instance of the 

problem with N  periods. Then, )()( 3NONf = . 
Proof. The maximum total number of nodes generated in the search tree to find the optimal 

order policy in an instance with N  periods is )1)(1( 2 ++≤× NNMCNNBN . On the other 
hand, the maximum time spent for each node in the search tree is 21 FFB ttt ++  which is 

constant. Therefore, ))(1)(1()( 21
2

FFB tttNNNf ++++≤  where the last term is )( 3NO  and 
the proof is complete. □ 

 
 

6. COMPUTATIONAL EXPERIENCE 
 

In order to demonstrate the computational efficiency of our algorithm, it has been coded in 
C++ 6.0 and the average CPU times required for solving some randomly generated problems 
have been gathered.  

 
6.1. Experimental design 

For the experimental design, we have adopted the framework of control factors in 
Mirmohammadi et al. [5]. There are two factors which characterize the demand environment 
of the problems, the number of periods in the planning horizon (N) and the coefficient of 
variation of demand (CV). The coefficient of variation (CV) measures the period-to-period 
variation in demand. It is the ratio of the standard deviation of the demand to the average 
demand. The CV values used for this experiment are 0.29 and 1.85. The values of N are 24, 
124, 224,…, 924 and 1024. The ratio of the discount level to the average demand (D/R) is set 
to 2 and the discount rate, α ,  is set to 10%. The ratio of the unit resale price to discounted 

unit net price (
U

CAR
)1( α−

= ) describes the attractiveness of resale and has the values of 

0.15, 0.3, 0.45, 0.6 and 0.75. The values of other parameters used in this experiment are listed 
in Table 2. 
 

Table 2. Values of parameters used in the experiment 

Ordering cost (A) =92 
Inventory holding Cost 5 ,...,2 ,1,//2 =∀= junitperiodh j  
unit net price 500=U  
Average demand (R) =92 

 
For each combination of N, CV and AR , 20 instances are randomly generated from a 

truncated normal distribution with mean of 92 and variance obtained by CV parameter, to 
provide 2200 test problems for the experiment. The performance criterion is the CPU time (m. 
sec.) on the Pentium(R) 4 CPU 3.41 GHz with 2.00 GB of RAM. Table 3 contains the results.  
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Table 3. Average CPU time of each combination of N, CV and AR  

AR=0.75 AR=0.6 AR=0.45 AR=0.3 AR=0.15 N 

CV=1.85 CV=0.29 CV=1.85 CV=0.29 CV=1.85 CV=0.29 CV=1.85 CV=0.29 CV=1.85 CV=0.29  

1.55 0 0.75 0 0.75 0 0.75 0 0 0.75 24 

56.25 71.85 56.2 71.05 55.45 69.55 59.35 73.4 56.25 71.05 124 

348.4 419.4 352.3 423.45 347.65 435.95 348.45 425 347.65 408.65 224 

1029.65 1262.45 1252.25 1252.25 1039.05 1256.6 1022.75 1256.2 1017.1 1243.65 324 

2378.05 2889.8 2384.35 2899.1 2375.05 2907.8 2397.65 2895.45 2380.5 2953.2 424 

4549.95 5566.3 4516.45 5532.05 4561.6 5524.75 4526.6 5536.15 4569.45 5575.9 524 

7734.5 9446.1 7722.6 9481.8 7774.3 9512.5 7709.3 9640 7738.25 9479.65 624 

12194.6 14992.8 12050.7 15017.1 12306.35 14819.75 12071.15 15488.95 12280.45 15075.7 724 

18060 22391.55 18048.65 22446.65 18029.55 22457.05 18376.4 22611.5 18051.5 22506.15 824 

25645.3 31869.45 25613.4 32065.56 25184.25 32235.1 26017.9 32254.8 25758.65 31912.45 924 

35138.95 44428.2 35807.65 44268.7 35533.6 44381.15 35614.85 44264.2 35848.35 44316.45 1024 

 
6.2. Analysis of test results  

The following summarized conclusions are derived from the experiment: 
 

1. When N increases constantly from 0 to 1024, the CPU time increases with the 
maximum order of 3. In other words, the time complexity function of the algorithm 
when N changes from 0 to 1024 is )( 3NO  in this experiment which confirms 
Theorem 2.  The CPU time and the equation of the trend line is depicted in Figure 4 
for CV=0.29 and 15.0=AR .  

2. The CPU time decreases when CV increases  from 0.29 to 1.85 for each level of N and 
AR .    

3. It seems that the attractiveness of resale has no significant effect on CPU time since the 
CPU time has no stable pattern versus the variation of AR . 
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Figure 4. CPU time increase with CV=0.29 and 15.0=AR  

 
 

7. CONCLUSIONS  
 

The properties of an optimal order policy for the dynamic quantity discount problem with 
resale in single price break points have been discussed in this paper. On the basis of them, an 
optimal algorithm based on branch and bound approach has been presented for the problem. 
By defining a rooted tree graph corresponding to each search tree called counter graph, it has 
been shown that the worst-case time complexity function of the presented algorithm is 

)( 3NO . The efficiency of the presented algorithm is shown by solving 2200 randomly 
generated problems. Experimental results confirm that the time complexity function of the 
presented algorithm is )( 3NO  for the adjusted parameters in the experiment.  
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